Steady state conduction one diemension

1- Plane wall
From Fourier equation $\mathrm{q}=-\mathrm{KA} \frac{d T}{d x} \longrightarrow$
$q d x=-k A d T$
$\mathrm{q}=-\mathrm{KA} \frac{(T 2-T 1)}{(X 2-X 1)} \longrightarrow$
$\mathrm{q}=-\mathrm{KA} \frac{\Delta T}{\Delta X}$ -1
T1

ΔX
H.W. If $k=k^{\circ}(1+B t)$ find q

2- Composite wall (multi layers)
Equation 1 may be rearranged as $\mathrm{q}=\frac{(T 1-T 2)}{\frac{\Delta X}{K A}} \ldots-\ldots-{ }^{-}$
In the figure

$$
\begin{aligned}
& \mathrm{q}=\frac{(T 1-T 2)}{\frac{\Delta X a}{K a A}}=\frac{(T 2-T 3)}{\frac{\Delta X b}{K b A}} \\
& \mathrm{q}=\frac{(T i n-T o u t)}{\frac{\Delta X a}{K a A}+\frac{\Delta X b}{K b}}-\cdots-\cdots---3
\end{aligned}
$$

Heat flow $=\frac{\text { thermal potential differince }}{\text { thermal resistance }}$
A relation quite like Ohms law in electric - circuit theory, in equation 2 the resistance is $\Delta \mathrm{x} / \mathrm{kA}$, and in equation 3 it is the sum of two terms
$\mathrm{R} 1=\frac{\Delta X a}{K a A} \quad, \quad \mathrm{R} 2=\frac{\Delta X b}{K b A} \quad, \quad \mathrm{R}_{\text {total }}=\mathrm{R} 1+\mathrm{R} 2, \quad \mathrm{q}=\frac{(\text { (Tin }- \text { Tout })}{\mathrm{R} 1+\mathrm{R} 2}$

For 3 layers
$\mathrm{q}=\frac{(T 1-T 2)}{\frac{\Delta X a}{K a A}}=\frac{(T 2-T 3)}{\frac{\Delta X b}{K b A}}=\frac{(T 3-T 4)}{\frac{\Delta X c}{K c A}}$
$\mathrm{q}=\frac{(\text { Tin }- \text { Tout })}{\frac{\Delta X a}{K a A}+\frac{\Delta X b}{K b A}+\frac{\Delta X c}{K c A}}$

$$
\mathrm{q}=\frac{(\text { Tin-Tout })}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3} \quad \mathrm{~T} 1 \quad \mathrm{R} 1 \quad \mathrm{~T} 2 \mathrm{R} 2_{\mathrm{T} 3}^{\mathrm{R} 3} \mathrm{~T} 4
$$

H.W. Draw the electric analog for the figure

A	B	E	F
	C		
	D		G

Example: One side of copper block 5 cm thick ($\mathrm{k}=386 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$) is maintained at $250^{\circ} \mathrm{C}$.The other side is covered with layer of Fiberglas 2.5 cm thick $\left(\mathrm{k}=0.038 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)$ at $35{ }^{\circ} \mathrm{C}$.The total heat through the copper fiberglass is 52 kw . What is the area of slab.

Solution:

$\frac{\mathrm{q}}{\mathrm{A}}=\frac{(\text { Tin }- \text { Tout })}{\frac{\Delta X a}{K a}+\frac{\Delta X b}{K b}}$
$R 1=\frac{\Delta X a}{K a}=\frac{0.05}{386}=1.295 \times 10^{-4}$
$\mathrm{R} 2=\frac{\Delta X b}{K b}=\frac{0.025}{0.038}=0.65789$
$\frac{\mathrm{q}}{\mathrm{A}}=\frac{(\text { Tin-Tout })}{\mathrm{R} 1+\mathrm{R} 2}=\frac{(250-35)}{1.295 \times 10^{\wedge}-4+0.65789}$
$\frac{52000}{\mathrm{~A}}=\frac{215}{0.6580} \longrightarrow \mathrm{~A}=159.144 \mathrm{~m}^{2}$

Example: A composite wall is formed of 2.5 cm copper ($\mathrm{k}=386$ $\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$), 3.2 mm layer of asbestos ($\mathrm{k}=0.16 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$) and 5 cm layer of fiberglass ($\mathrm{k}=0.038 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$). The wall is subjected to an overall temperature difference of $560^{\circ} \mathrm{C}$. Calculate the heat flow per unit area through the composite structure.
$\frac{\mathrm{q}}{\mathrm{A}}=\frac{(\text { Tin-Tout })}{\frac{\Delta X a}{K a}+\frac{\Delta X b}{K b}+\frac{\Delta X c}{K A}}$
$\frac{\mathrm{q}}{\mathrm{A}}=\frac{(\text { Tin }- \text { Tout })}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3}$
$\mathrm{R} 1=\frac{\Delta X a}{K a}=\frac{2.5 \times 10^{\wedge}-2}{386}=6.476 \times 10^{-5}$

Copper	Asbestos	Fiber glass

$2.5 \times 10^{-2} \mathrm{~cm} 3.2 \times 10^{-3} \mathrm{~mm} 5 \mathrm{x} 10^{-2} \mathrm{~cm}$
$\mathrm{R} 2=\frac{\Delta X b}{K b}=\frac{3.2 \times 10^{\wedge}-3}{0.16}=0.02$
$\mathrm{R} 3=\frac{\Delta X c}{K c}=\frac{5 \times 10^{\wedge}-2}{0.038}=1.3158$
$\frac{\mathrm{q}}{\mathrm{A}}=\frac{560}{6.476 \times 10-5+0.02+1.3158}=\frac{560}{1.3358}=419.21 \mathrm{~W} / \mathrm{m}^{2}$

Radial system :

1-Cylinder:
Consider along cylinder of inside radius (ri), outside radius (r°) and length (L) as shown below:

Fourier law is used by inserting the proper area relation
$\mathrm{q}_{\mathrm{r}}=-\mathrm{k} \mathrm{A} \mathrm{A}_{\mathrm{r}} \frac{\mathrm{dT}}{\mathrm{dr}}$
, $\mathrm{A}_{\mathrm{r}}=2 \pi \mathrm{rL}$

$q_{r}=-2 \pi k r L \frac{d T}{d r}$
$\mathrm{q}_{\mathrm{r}} \frac{\mathrm{dr}}{\mathrm{r}}=-2 \pi \mathrm{~kL} \mathrm{dt} \longrightarrow$
$\mathrm{q}_{\mathrm{r}}=\frac{2 \pi K L(T i-T o)}{\ln \left(\frac{r o}{r i}\right)}$
$\mathrm{q}_{\mathrm{r}}=\frac{(T i-T o)}{\frac{\ln \left(\frac{r o}{r i}\right)}{2 \pi K L}} \quad, \quad \mathrm{qr}=\frac{(T i-T o)}{\mathrm{R} 1} \quad, \quad \mathrm{R} 1=\frac{\ln \left(\frac{r o}{r i}\right)}{2 \pi K L}$
The thermal resistance concept may be used for multiple layer cylindrical walls just as it was used for plane wall.

For three layers system as shown in figure:

$R 3=\frac{\ln \left(\frac{r 4}{r 3}\right)}{2 \pi K 3 L}$
$\mathrm{q}_{\mathrm{r}}=\frac{(T i-T o)}{\frac{\ln \left(\frac{r 2}{r 1}\right)}{2 \pi K 1 L}+\frac{\ln \left(\frac{r 3}{r 2}\right)}{2 \pi K 2 L}+\frac{\ln \left(\frac{r 4}{r 3}\right)}{2 \pi K 3 L}} \quad \mathrm{qr}=\frac{(T i-T o)}{\mathrm{R} 1+R 2+R 3}$
Or $\mathrm{q}_{\mathrm{r}}=\frac{2 \pi L(T i-T o)}{\frac{\ln \left(\frac{r 2}{r 1}\right)}{K 1}+\frac{\ln \left(\frac{r 3}{r 2}\right)}{K 2}+\frac{\ln \left(\frac{r 4}{r 3}\right)}{K 3}}$

2- Spheres:

Spherical system may also be treated as one dimensional when the temperature is a function of radius only. The heat flow is then:
$q_{r}=-k A_{r} \frac{d T}{d r} \quad, A_{r}=4 \pi r^{2}$
$\mathrm{q}_{\mathrm{r}}=-\mathrm{k}\left(4 \pi \mathrm{r}^{2}\right) \frac{\mathrm{dT}}{\mathrm{dr}} \quad, \mathrm{q}_{\mathrm{r}} \frac{\mathrm{dr}}{\mathrm{r}^{\wedge} 2}=-4 \pi \mathrm{kdt}$
$\mathrm{q}_{\mathrm{r}}=\frac{(T i-T o)}{\left(\frac{1}{r 1}\right)-\left(\frac{1}{r 2}\right)} \quad, \quad \mathrm{qr}=\frac{(T i-T o)}{\mathrm{R} 1}$

Or $\mathrm{q}_{\mathrm{r}}=\frac{4 \pi k(T i-T o)}{\left(\frac{1}{r 1}\right)-\left(\frac{1}{r 2}\right)}$
For Two layers spheres
$\mathrm{qr}=\frac{4 \pi(T i-T o)}{\frac{1}{k 1}\left\{\left(\frac{1}{r 1}\right)-\left(\frac{1}{r 2}\right)\right\}+\frac{1}{k 2}\left\{\left(\frac{1}{r 2}\right)-\left(\frac{1}{r 3}\right)\right\}}$
Example: A hot pipe $\mathrm{k}=40 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$ having an inside surface temperature of $300^{\circ} \mathrm{C}$ has an inside diameter 10 cm a wall thickness 6 mm is covered with 5 cm layer of insulation having $\mathrm{k}=0.2 \mathrm{~W} / . \mathrm{m} .{ }^{\circ} \mathrm{C}$ followed by 3 cm layer of insulation having $\mathrm{k}=0.4 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$. The outside temperature of insulation is $40^{\circ} \mathrm{C}$. Calculate the heat lost per meter of length.

Solution

$$
\begin{aligned}
& \mathrm{r} 1=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m} \quad \mathrm{r} 2=5+0.6=5.6 \mathrm{~cm}=5.6 \times 10^{-2} \mathrm{~m} \\
& \mathrm{r} 3=5+0.6+5=10.6 \mathrm{~cm}=10.6 \times 10^{-2} \mathrm{~m} \\
& \mathrm{r} 4=5+0.6+5+3=13.6 \mathrm{~cm}=13.6 \times 10^{-2} \mathrm{~m} \\
& \frac{\mathrm{q}}{\mathrm{~L}}=\frac{(T i-T o)}{\mathrm{R} 1+R 2+R 3}
\end{aligned}
$$

$$
\mathrm{R} 1=\frac{\ln \left(\frac{r 2}{r 1}\right)}{2 \pi K 1}=\frac{\ln \left(\frac{5.6 \times 10^{\wedge}-2}{5 \times 1 \wedge^{\wedge}-2}\right)}{2 \pi * 40}=4.5 \times 10^{-4}
$$

$$
\mathrm{R} 2=\frac{\ln \left(\frac{r 3}{r 2}\right)}{2 \pi K 2}=\frac{\ln \left(\frac{10.6 \times 10^{\wedge}-2}{5.6 \times 10^{\wedge}-2}\right)}{2 \pi * 0.2}=0.508
$$

$\mathrm{R} 3=\frac{\ln \left(\frac{r 4}{r 3}\right)}{2 \pi K 3}==\frac{\ln \left(\frac{13.6 \times 10^{\wedge}-2}{10.6 \times 10^{\wedge}-2}\right)}{2 \pi * 0.4}=0.0992$
$\frac{\mathrm{q}}{\mathrm{L}}=\frac{300-40}{4.5 \times 10^{\wedge}-4+0.508+0.0992}=427.87 \mathrm{w} / \mathrm{m}$
Example: A hollow sphere is constructed of stainless steel $\mathrm{k}=15 \mathrm{~W} / \mathrm{m} . \mathrm{C}$ with an inner diameter of 4 cm and outer diameter of 8 cm the inside and outer temperature is 100 and 50 C respectively .Calculate the heat rate Solution

$$
\begin{aligned}
& \mathrm{r} 1=0.02 \mathrm{~m} \\
& \mathrm{q}_{\mathrm{r}}=\frac{4 \pi k(T i-T o)}{\left(\frac{1}{r 1}\right)-\left(\frac{1}{r 2}\right)}
\end{aligned}
$$

$\mathrm{q}_{\mathrm{r}}=\frac{4 \pi * 15(100-50)}{\left(\frac{1}{0.02}\right)-\left(\frac{1}{0.04}\right)}=376.8 \mathrm{~W}$
Example: 1.6 cm diameter of stainless steel pipe $\mathrm{k}=15 \mathrm{w} / \mathrm{m} .{ }^{\circ} \mathrm{C}$ of 0.2 cm thick is insulated with thick plastic cover $\mathrm{k}=0.15 \mathrm{w} / \mathrm{m} .{ }^{\circ} \mathrm{C}$. What thickness of insulation must be added to ensure that $146 \mathrm{w} / \mathrm{m}$. The difference temperature is $80^{\circ} \mathrm{C}$.

Solution

$\mathrm{R} 1=0.8 \mathrm{~cm}$
$\mathrm{r} 2=0.8+0.2=1 \mathrm{~cm}$
$\mathrm{r} 3=0.8+0.2+\mathrm{x}=1+\mathrm{x} \mathrm{cm}$
$\frac{\mathrm{q}}{\mathrm{L}}=\frac{(\mathrm{Ti}-\mathrm{To})}{\mathrm{R} 1+R 2} \longrightarrow 146=\frac{80}{\mathrm{R} \text { total }} \longrightarrow \mathrm{R}$ total $=0.548$
R total $=\mathrm{R} 1+\mathrm{R} 2=0.548$
$\mathrm{R} 1=\frac{\ln \left(\frac{r 2}{r 1}\right)}{2 \pi K 1}=\frac{\ln \left(\frac{1}{0.8}\right)}{2 \pi * 15}=2.368 \times 10^{-3}$
$\mathrm{R} 2=\mathrm{R}$ total -R 1
$\mathrm{R} 2=0.548-2.368 \times 10^{-3}=0.546$
$\mathrm{R} 2=\frac{\ln \left(\frac{r 3}{r 2}\right)}{2 \pi K 2} \longrightarrow 0.546=\frac{\ln \left(\frac{r 3}{1}\right)}{2 \pi * 0.15}$
$\ln \mathrm{r} 3=0.514$
$\mathrm{r} 3=1.672 \mathrm{~cm}$
r3 $=0.8+0.2$ +thickness

1. $672=1+$ thickness

Thickness $=0.672 \mathrm{~cm}$

